From dlfactris.lang Require Export notation. From dlfactris.base_logic Require Export proofmode. Module Sub. Notation prot := aMiniProt. Notation dual := dual. Definition fork_chan : val := λ: "f", ForkChan "f". Definition recv : val := λ: "c", Recv "c". Definition send : val := λ: "c" "x", Send "c" "x". Definition subprot (p1 p2 : aMiniProt) : aProp := (* https://apndx.org/pub/icnp/dlfactris.pdf#nameddest=923fd1fb *) match prot_action p1, prot_action p2 with | ASend, ASend => ∀ v, p2 v -∗ p1 v | ARecv, ARecv => ∀ v, p1 v -∗ p2 v | _, _ => False end. Definition own_chan (c : val) (p : prot) : aProp := ∃ (l : loc) p', ⌜⌜ c = #l ⌝⌝ ∗ ▷ subprot p' p ∗ own_chan l p'. Global Instance: Params (@own_chan) 1 := {}. Global Instance subprot_ne : NonExpansive2 subprot. Proof. intros ? [??] [??] [??] [??] [??] [??]; simplify_eq/=. rewrite /subprot /=. by repeat f_equiv. Qed. Global Instance subprot_proper : Proper ((≡) ==> (≡) ==> (≡)) subprot. Proof. apply ne_proper_2, _. Qed. Global Instance own_chan_contractive c : Contractive (own_chan c). Proof. solve_contractive. Qed. Global Instance own_chan_ne c : NonExpansive (own_chan c). Proof. solve_proper. Qed. Global Instance own_chan_proper c : Proper ((≡) ==> (≡)) (own_chan c). Proof. solve_proper. Qed. Module Import notations. Notation "p ⊑ q" := (subprot p q) : bi_scope. Notation "c ↣ p" := (own_chan c p) : bi_scope. End notations. Lemma subprot_refl p : ⊢ p ⊑ p. Proof. destruct p as [[] Φ]; rewrite /subprot //=; auto. Qed. Lemma subprot_dual p1 p2 : dual p1 ⊑ dual p2 ⊣⊢ p2 ⊑ p1. Proof. destruct p1 as [[]], p2 as [[]]; auto. Qed. Lemma subprot_trans p1 p2 p3 : p1 ⊑ p2 -∗ p2 ⊑ p3 -∗ p1 ⊑ p3. Proof. iIntros "Hsp1 Hsp2". destruct p1 as [[] P1], p2 as [[] P2], p3 as [[] P3]; rewrite /subprot //=; iIntros (v) "H //"; by do 2 (iApply "Hsp1" || iApply "Hsp2"). Qed. Lemma own_chan_subprot c p p' : c ↣ p -∗ ▷ (p ⊑ p') -∗ c ↣ p'. Proof. iIntros "(%l & %p'' & -> & Hsp' & Hc) Hsp". iExists l, p''. iSplit; [done|]. iFrame. by iApply (subprot_trans with "Hsp'"). Qed. Local Lemma own_chan_from_base l p : aprop.own_chan l p ⊢ #l ↣ p. Proof. iIntros "Hown". iExists l, p. iSplit; [done|]. iFrame. iApply subprot_refl. Qed. (** WP's for own_chan_sub *) Lemma wp_fork_chan p (f : val) : ▷ (∀ c, c ↣ dual p -∗ WP f c {{ _, emp }}) -∗ WP fork_chan f {{ c, c ↣ p }}. Proof. iIntros "Hf". wp_rec. iApply (wp_fork with "[Hf]"); iIntros "!>" (l) "Hown". - iApply "Hf". by iApply own_chan_from_base. - by iApply own_chan_from_base. Qed. Lemma wp_recv c Φ : c ↣ MiniProt ARecv Φ -∗ WP recv c {{ Φ }}. Proof. iIntros "(%l & %p' & -> & Hsp & Hc)". wp_rec. destruct p' as [[] Ψ]; rewrite /subprot //=. by iApply (wp_recv with "Hc"). Qed. Lemma wp_send c v Φ : c ↣ MiniProt ASend Φ -∗ ▷ Φ v -∗ WP send c v {{ v, ⌜⌜ v = #() ⌝⌝ }}. Proof. iIntros "(%l & %p' & -> & Hsp & Hc) HΦ". wp_rec. destruct p' as [[] Ψ]; rewrite /subprot //=. iApply (wp_send with "[$]"). by iApply "Hsp". Qed. Global Opaque fork_chan send recv own_chan. Global Typeclasses Opaque subprot. End Sub. |