From dlfactris.session_logic Require Export proofmode.
From dlfactris.examples Require Import assert.
Import TImp TImp.notations.
Definition prog1 : val := λ: <>, (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=51d1c139 *)
let: "c1" := fork_chan (λ: "c2", send "c2" (recv "c2" + #1);; close "c2") in
send "c1" #1;; let: "x" := recv "c1" in assert: ("x" = #2);; wait "c1".
Definition prog1_prot1 : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=426a229e *)
<!> MSG #1 ; <?> MSG #2; END?.
Lemma prog1_spec1 : {{{ emp }}} prog1 #() {{{ RET #(); emp }}}.
Proof.
iIntros (Φ) "_ HΦ". wp_rec. iApply (wp_fork_chan prog1_prot1);
iIntros "!> %c Hc".
{ wp_recv. wp_send. by wp_close. }
wp_send. wp_recv. iApply wp_assert. wp_pures. iSplit; [done|].
iIntros "!>". wp_wait. by iApply "HΦ".
Qed.
Definition prog1_prot2 : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=9c45655a *)
<!(x:Z)> MSG #x ; <?> MSG #(x+1); END?.
Lemma prog1_spec2 : {{{ emp }}} prog1 #() {{{ RET #(); emp }}}.
Proof.
iIntros (Φ) "_ HΦ". wp_rec. iApply (wp_fork_chan prog1_prot2);
iIntros "!> %c Hc".
{ wp_recv. wp_send. by wp_close. }
wp_send. wp_recv. iApply wp_assert. wp_pures. iSplit; [done|].
iIntros "!>". wp_wait. by iApply "HΦ".
Qed.
Definition prog2 (e:val) : val := λ: "c", (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=a3bb3a2e *)
let: "n" := recv "c" in
if: "n" < #5 then close "c"
else send "c" ("n" - #5);; e "c".
Definition prog2_prot (p:prot) : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=7fd295cd *)
<?(n:Z)> MSG #n ; if bool_decide (n < 5)%Z then END! else <!> MSG #(n-5); p.
Lemma prog2_spec c (e:val) p :
(∀ c, {{{ c ↣ p }}} e c {{{ RET #(); emp }}}) →
{{{ c ↣ prog2_prot p }}} (prog2 e) c {{{ RET #(); emp }}}.
Proof.
iIntros (He). iIntros (Φ) "Hc HΦ". wp_rec.
wp_recv. wp_pures. case_bool_decide.
- wp_close. by iApply "HΦ".
- wp_send. by iApply (He with "Hc").
Qed.
Definition prog3 : val := λ: <>, (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=9f500207 *)
let: "c1" := fork_chan (λ: "c2", let: "l" := recv "c2" in
"l" <- (!"l" + #1);; close "c2") in
let: "l" := Alloc #1 in send "c1" "l";; wait "c1";;
let: "x" := !"l" in assert: ("x" = #2);; Free "l".
Definition prog3_prot : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=638e8e5b *)
<!(l:loc)(n:Z)> MSG #l {{ l ↦ #n }}; END?{{ l ↦ #(n+1) }}.
Lemma prog3_spec : {{{ emp }}} prog3 #() {{{ RET #(); emp }}}.
Proof.
iIntros (Φ) "_ HΦ". wp_rec. iApply (wp_fork_chan prog3_prot);
iIntros "!> %c Hc".
{ wp_rec. wp_recv as "Hl". wp_load. wp_store.
iDestruct (own_chan_subprot with "Hc [Hl]") as "Hc".
{ iFrame. by eauto. }
by wp_close. }
wp_alloc l as "Hl". wp_send with "[$Hl]".
iApply (wp_wait with "Hc"); iIntros "!> Hc".
wp_load. iApply wp_assert. wp_pures. iSplit; [done|].
iIntros "!>". wp_free. by iApply "HΦ".
Qed.
Definition prog4 : val := λ: <>, (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=2af87f17 *)
let: "l" := Alloc #1 in
let: "c1" := fork_chan (λ: "c2", "l" <- (!"l" + #1);; close "c2") in
wait "c1";; let: "x" := !"l" in assert: ("x" = #2);; Free "l".
Definition prog4_prot (l:loc) : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=906a1946 *)
END? {{ l ↦ #2 }}.
Lemma prog4_spec : {{{ emp }}} prog4 #() {{{ RET #(); emp }}}.
Proof.
iIntros (Φ) "_ HΦ". wp_rec. wp_alloc l as "Hl".
iApply (wp_fork_chan (prog4_prot l) with "[Hl]"); iIntros "!> %c Hc".
{ wp_load. wp_store.
iDestruct (own_chan_subprot with "Hc [Hl]") as "Hc".
{ iApply subprot_dual. iFrame. by eauto. }
by wp_close. }
iApply (wp_wait with "Hc"); iIntros "!> Hc".
wp_load. iApply wp_assert. wp_pures. iSplit; [done|].
iIntros "!>". wp_pures. wp_free. by iApply "HΦ".
Qed.
Definition prog5 : val := λ: <>, (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=e637f953 *)
let: "d1" :=
fork_chan (λ: "d2",
let: "c1" := recv "d2" in
let: "x" := recv "c1" in
assert: ("x" = #2);; close "d2") in
let: "c1" :=
fork_chan (λ: "c2", send "c2" #2;; wait "c2") in
send "d1" "c1";; wait "d1";; close "c1".
Definition prog5_prot1 : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=e4b55b16 *)
<?> MSG #2 ; END!.
Definition prog5_prot2 : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=6a79b0d7 *)
<!(c:val)> MSG c {{ c ↣ prog5_prot1 }} ; END? {{ c ↣ END! }}.
Lemma prog5_spec : {{{ emp }}} prog5 #() {{{ RET #(); emp }}}.
Proof.
iIntros (Φ) "_ HΦ". wp_rec.
iApply (wp_fork_chan prog5_prot2); iIntros "!> %d Hd".
{ wp_rec. wp_recv (c) as "Hc". wp_recv.
iApply wp_assert. wp_pures. iSplit; [done|].
iIntros "!>". wp_pures.
iDestruct (own_chan_subprot _ _ END!%prot with "Hd [Hc]") as "Hd".
{ iIntros "!>". by iFrame "Hc". }
by wp_close. }
iApply (wp_fork_chan prog5_prot1); iIntros "!> %c Hc".
{ wp_rec. wp_send. by wp_wait. }
wp_send with "[$Hc]". iApply (wp_wait with "Hd"); iIntros "!>Hc".
wp_close. by iApply "HΦ".
Qed.
Definition prog6 : val := λ: <>, (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=f1f9a9a7 *)
let: "d1" :=
fork_chan (λ: "d2",
let: "c1" := !(recv "d2") in
let: "x" := recv "c1" in
assert: ("x" = #2);; close "d2") in
let: "l" :=
Alloc (fork_chan (λ: "c2", send "c2" #2;; wait "c2")) in
send "d1" "l";; wait "d1";; close (!"l");; Free "l".
Definition prog6_prot2 : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=8eb1e333 *)
<!(l:loc)(c:val)> MSG #l {{ l ↦ c ∗ c ↣ <?> MSG #2 ; END! }} ;
END? {{ l ↦ c ∗ c ↣ END! }}.
Lemma prog6_spec : {{{ emp }}} prog6 #() {{{ RET #(); emp }}}.
Proof.
iIntros (Φ) "_ HΦ". wp_rec.
iApply (wp_fork_chan prog6_prot2); iIntros "!> %d Hd".
{ wp_rec. wp_recv (l c) as "[Hl Hc]". wp_load. wp_recv.
iApply wp_assert. wp_pures. iSplit; [done|].
iIntros "!>". wp_pures.
iDestruct (own_chan_subprot _ _ END!%prot with "Hd [Hl Hc]") as "Hd".
{ iIntros "!>". by iFrame "Hl Hc". }
by wp_close. }
iApply (wp_fork_chan prog5_prot1); iIntros "!> %c Hc".
{ wp_rec. wp_send. by wp_wait. }
wp_alloc l as "Hl". wp_send with "[$Hl $Hc]".
iApply (wp_wait with "Hd"); iIntros "!>[Hl Hc]".
wp_load. wp_close. wp_free. by iApply "HΦ".
Qed.
Definition prog7 (e : val): val := λ: <>, (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=ea369ad3 *)
let: "c1" :=
fork_chan (λ: "c2",
let: "f" := recv "c2" in
send "c2" ("f" #());;
close "c2") in
e #().
Definition prog7_prot : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=ceb30075 *)
<!(f:val) (Φ:val → aProp)> MSG f {{ (WP f #() {{ Φ }}) }};
<?(v:val)> MSG v {{ Φ v }}; END?.
Lemma prog7_spec (e : val) :
(∀ c, {{{ c ↣ prog7_prot }}} e #() {{{ RET #(); emp }}}) →
{{{ emp }}} (prog7 e) #() {{{ RET #(); emp }}}.
Proof.
iIntros (HE Φ) "_ HΦ". wp_rec.
iApply (wp_fork_chan prog7_prot); iIntros "!> %c Hc".
{ wp_rec. wp_recv (f) as "Hf".
iApply "Hf"; iIntros "!>" (v) "HΦ".
wp_send with "[$HΦ]". by wp_close. }
by iApply (HE with "Hc").
Qed.