Guarantees by Construction (Mechanization)

Jules Jacobs

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
From cgraphs.lambdabar Require Export langdef.

Notation vertex := nat.
Definition label : Type := bool * type * type.

(* ----------- *)
(* Boilerplate *)

(* Canonical Structure vertexO := leibnizO vertex. *)
Canonical Structure typeO := leibnizO type.
Canonical Structure labelO := prodO boolO (prodO typeO typeO).
(*
Global Instance vertex_eqdecision : EqDecision vertex.
Proof.
  intros [n|n] [m|m]; unfold Decision; destruct (decide (n = m));
  subst; eauto; right; intro; simplify_eq.
Qed.
Global Instance vertex_countable : Countable vertex.
Proof.
  refine (inj_countable' (λ l, match l with
  | VThread n => inl n
  | VBarrier n => inr n
  end) (λ l, match l with
  | inl n => VThread n
  | inr n => VBarrier n
  end) _); by intros [].
Qed. *)

(* End boilerplate *)
(* --------------- *)

Notation rProp := (hProp vertex labelO).

Definition linbox l (P : rProp) : rProp :=
  match l with
  | Lin => P
  | Unr =>  P
  end.

Fixpoint rtyped (Γ : env) e t : rProp :=
  match e with
  | Val v => ⌜⌜ env_unr Γ ⌝⌝  vtyped v t
  | Var x => ⌜⌜ env_var Γ x t ⌝⌝
  | Fun x e =>
       l t1 t2, ⌜⌜ t = FunT l t1 t2 ⌝⌝  
       Γ', ⌜⌜ env_bind Γ' x t1 Γ  (l = Unr -> env_unr Γ) ⌝⌝ 
      linbox l (rtyped Γ' e t2)
  | App e1 e2 =>
       Γ1 Γ2, ⌜⌜ env_split Γ Γ1 Γ2 ⌝⌝ 
       t1 l,
      rtyped Γ1 e1 (FunT l t1 t) 
      rtyped Γ2 e2 t1
  | Unit => ⌜⌜ t = UnitT  env_unr Γ ⌝⌝
  | Pair e1 e2 =>
       Γ1 Γ2, ⌜⌜ env_split Γ Γ1 Γ2 ⌝⌝ 
       t1 t2, ⌜⌜ t = PairT t1 t2 ⌝⌝ 
      rtyped Γ1 e1 t1  rtyped Γ2 e2 t2
  | LetPair e1 e2 =>
       Γ1 Γ2, ⌜⌜ env_split Γ Γ1 Γ2 ⌝⌝ 
       t1 t2,
      rtyped Γ1 e1 (PairT t1 t2) 
      rtyped Γ2 e2 (FunT Lin t1 (FunT Lin t2 t))
  | Sum i e =>
       n (ts : fin n -> type) (i' : fin n), ⌜⌜ t = SumT n ts ⌝⌝  ⌜⌜ i = i' ⌝⌝ 
      rtyped Γ e (ts i')
  | MatchSum n e es =>
       Γ1 Γ2, ⌜⌜ env_split Γ Γ1 Γ2  (n = 0 -> env_unr Γ2)⌝⌝ 
       ts,
      rtyped Γ1 e (SumT n ts) 
      if decide (n=0) then ⌜⌜ env_unr Γ2 ⌝⌝ else (∀ i, rtyped Γ2 (es i) (FunT Lin (ts i) t))
  | Fork e =>
       t1 t2, ⌜⌜ t = FunT Lin t1 t2 ⌝⌝ 
      rtyped Γ e (FunT Lin (FunT Lin t2 t1) UnitT)
  end
with vtyped v t :=
  match v with
  | FunV x e =>
       l t1 t2, ⌜⌜ t = FunT l t1 t2 ⌝⌝  linbox l (rtyped {[ x := t1 ]} e t2)
  | UnitV => ⌜⌜ t = UnitT ⌝⌝
  | PairV v1 v2 =>
       t1 t2, ⌜⌜ t = PairT t1 t2 ⌝⌝ 
      vtyped v1 t1  vtyped v2 t2
  | SumV i v =>
       n ts (i' : fin n), ⌜⌜ t = SumT n ts  i = i' ⌝⌝ 
      vtyped v (ts i')
  | BarrierV k =>
       t1 t2, ⌜⌜ t = FunT Lin t1 t2 ⌝⌝ 
      own_out k ((false,(t1,t2)) : labelO)
  end.

Lemma typed_rtyped Γ e t :
  ⌜⌜ typed Γ e t ⌝⌝ - rtyped Γ e t.
Proof.
  iIntros (H).
  iInduction e as [] "IH" forall (t Γ H);
  inv H; simpl; eauto; repeat iExists _; iSplitL; eauto;
  repeat iExists _; try iSplitL; eauto; try iSplitL;
  try destruct l; try case_decide; repeat iIntros (?);
  try iApply ("IH" with "[%]") || iApply ("IH1" with "[%]"); eauto.
Qed.

(* From stdpp's naive_solver *)
Ltac simp :=
  repeat match goal with
  (**i solve the goal *)
  | |- _ => fast_done
  (**i intros *)
  | |-  _, _ => intro
  (**i simplification of assumptions *)
  | H : False |- _ => destruct H
  | H : _  _ |- _ =>
     (* Work around bug https://coq.inria.fr/bugs/show_bug.cgi?id=2901 *)
     let H1 := fresh in let H2 := fresh in
     destruct H as [H1 H2]; try clear H
  | H :  _, _  |- _ =>
     let x := fresh in let Hx := fresh in
     destruct H as [x Hx]; try clear H
  | H : ?P  ?Q, H2 : ?P |- _ => specialize (H H2)
  | H : Is_true (bool_decide _) |- _ => apply (bool_decide_unpack _) in H
  | H : Is_true (_ && _) |- _ => apply andb_True in H; destruct H
  (**i simplify and solve equalities *)
  | |- _ => progress simplify_eq/=
  (**i operations that generate more subgoals *)
  (* | |- _ ∧ _ => split *)
  (* | |- Is_true (bool_decide _) => apply (bool_decide_pack _) *)
  (* | |- Is_true (_ && _) => apply andb_True; split *)
  (* | H : _ ∨ _ |- _ => *)
     (* let H1 := fresh in destruct H as [H1|H1]; try clear H *)
  (* | H : Is_true (_ || _) |- _ => *)
     (* apply orb_True in H; let H1 := fresh in destruct H as [H1|H1]; try clear H *)
  (**i solve the goal using the user supplied tactic *)
  end.

Ltac iDestr H := repeat (iDestruct "H" as %? || iDestruct H as (?) H).
Ltac iSpl := repeat (iExists _ || iSplit || iIntros (?)).

Lemma unrestricted_box v t :
  unr t -> vtyped v t -  vtyped v t.
Proof.
  iIntros (H) "H".
  iInduction v as [] "IH" forall (t H); simpl;
  iDestr "H"; simp; inv H; simp; eauto.
  - iDestruct "H" as "#H". iModIntro. eauto.
  - iDestruct "H" as "[H1 H2]".
    iDestruct ("IH" with "[%] H1") as "H1"; first done.
    iDestruct ("IH1" with "[%] H2") as "H2"; first done.
    iDestruct "H1" as "#H1".
    iDestruct "H2" as "#H2".
    iModIntro. repeat (iExists _ || iSplitL); eauto.
  - iDestruct ("IH" with "[%] H") as "H"; first done.
    iDestruct "H" as "#H". iModIntro. eauto.
Qed.


Definition substR (Γ : env) x v := from_option (vtyped v) emp%I (Γ !! x).

Ltac sdec := repeat case_decide; simplify_eq; simpl in *; eauto; try done.
Ltac smap := repeat (rewrite lookup_alter_spec || rewrite lookup_union || rewrite lookup_insert_spec || rewrite lookup_delete_spec || sdec).

Lemma env_unr_substR Γ x v :
  env_unr Γ -> substR Γ x v  emp.
Proof.
  rewrite /env_unr /substR.
  destruct (Γ !! x) eqn:E; simp.
  rewrite unrestricted_box; eauto.
Qed.

Lemma env_split_substR Γ Γ1 Γ2 x v :
  env_split Γ Γ1 Γ2 -> substR Γ x v  substR Γ1 x v  substR Γ2 x v.
Proof.
  rewrite /env_split /substR. simp.
  rewrite lookup_union.
  destruct (Γ1 !! x) eqn:E;
  destruct (Γ2 !! x) eqn:F; rewrite ?E ?F; simpl; eauto.
  edestruct (H1 x); eauto. simp.
  iIntros "H".
  iDestruct (unrestricted_box with "H") as "H"; eauto.
  iDestruct "H" as "#H". iSplitL; eauto.
Qed.

Lemma env_var_substR Γ x y v t :
  env_var Γ y t ->
  substR Γ x v  if decide (x = y) then vtyped v t else emp.
Proof.
  rewrite /env_var /substR. simp. smap.
  destruct (_!!_) eqn:E; simp.
  rewrite unrestricted_box; eauto.
Qed.

Lemma env_bind_substR Γ Γ' l x y v t :
  (l = Unr -> env_unr Γ) -> env_bind Γ' y t Γ ->
  substR Γ x v  if decide (x = y) then emp else linbox l (substR Γ' x v).
Proof.
  rewrite /env_bind /substR. simp. smap.
  - destruct (Γ !! y) eqn:E; simpl; eauto.
    rewrite unrestricted_box; eauto.
  - destruct (Γ !! x) eqn:E; rewrite ?E; destruct l; eauto; simpl.
    rewrite {1}unrestricted_box; eauto.
    eapply H; eauto.
Qed.


Lemma env_unr_delete Γ x :
  env_unr Γ -> env_unr (delete x Γ).
Proof.
  rewrite /env_unr. intros ???. smap.
Qed.

Lemma env_split_delete Γ Γ1 Γ2 x :
  env_split Γ Γ1 Γ2 -> env_split (delete x Γ) (delete x Γ1) (delete x Γ2).
Proof.
  rewrite /env_split /disj. simp.
  split; [apply delete_union|].
  intros ???. smap.
Qed.

Lemma env_var_delete y x Γ t :
  env_var Γ x t -> if decide (y = x) then env_unr (delete y Γ) else env_var (delete y Γ) x t.
Proof.
  rewrite /env_var /env_unr. simp. smap.
  - simp. revert H. smap.
  - exists (delete y H0). split.
    + apply map_eq. intro. smap.
    + intros ??. smap.
Qed.

Lemma env_bind_delete x y t Γ Γ' :
  env_bind Γ' x t Γ ->
  env_bind (if decide (y = x) then Γ' else delete y Γ') x t (delete y Γ).
Proof.
  rewrite /env_bind. simp.
  split.
  - apply map_eq. intro. smap.
  - intro. smap.
Qed.


Lemma env_unr_empty :
  env_unr .
Proof.
  rewrite /env_unr. intros ??. smap.
Qed.

Lemma env_split_empty Γ1 Γ2 :
  env_split  Γ1 Γ2 <-> Γ1 =   Γ2 = .
Proof.
  rewrite /env_split.
  split. simp.
  - symmetry in H0.
    pose proof (map_positive_l _ _ H0). subst.
    rewrite left_id in H0. subst. eauto.
  - simp. rewrite left_id. split; eauto.
    rewrite /disj. intros ??. smap.
Qed.

Lemma env_var_empty x t :
  env_var  x t <-> False.
Proof.
  rewrite /env_var. split; simp.
  rewrite map_eq_iff in H. specialize (H x). revert H. smap.
Qed.

Lemma env_bind_empty Γ x t1 :
  env_bind Γ x t1  <-> Γ = {[ x := t1 ]}.
Proof.
  rewrite /env_bind. repeat split; simp.
Qed.


Lemma linbox_mono P Q l :
   (P - Q) - linbox l P - linbox l Q.
Proof.
  iIntros "#H P".
  destruct l; simpl; [|iDestruct "P" as "#P"; iModIntro];
  iApply "H"; done.
Qed.

Lemma linbox_sep P Q l :
  linbox l P  linbox l Q  linbox l (P  Q).
Proof.
  destruct l; simpl; eauto.
  iIntros "[#H #R]". iModIntro.
  iSplitL; eauto.
Qed.


Lemma substitution Γ x v e t :
  substR Γ x v 
  rtyped Γ e t -
  rtyped (delete x Γ) (subst x v e) t.
Proof.
  iIntros "RH".
  iInduction e as [] "IH" forall (Γ t); simpl;
  iDestruct "RH" as "[R H]"; iDestr "H"; try iDestruct "H" as "[H Q]"; simp.
  - rewrite env_unr_substR //. iSpl; eauto using env_unr_delete.
  - rewrite env_var_substR //.
    eapply (env_var_delete x) in H.
    case_decide; subst; simpl; iFrame; iPureIntro; eauto.
  - iExists _,_,_. iSplit; first done.
    iExists _. iSplit; eauto 6 using env_bind_delete, env_unr_delete.
    rewrite env_bind_substR; eauto.
    case_decide; subst; iFrame.
    iApply linbox_mono; eauto.
    iApply linbox_sep. iFrame.
  - iDestruct (env_split_substR with "R") as "[R1 R2]"; eauto.
    iSpl; eauto using env_split_delete.
    iSplitL "H R1"; (iApply "IH" || iApply "IH1"); eauto with iFrame.
  - rewrite env_unr_substR //.
    eauto using env_unr_delete.
  - iDestruct (env_split_substR with "R") as "[R1 R2]"; eauto.
    iSpl; eauto using env_split_delete.
    iSplitL "H R1"; (iApply "IH" || iApply "IH1"); eauto with iFrame.
  - iDestruct (env_split_substR with "R") as "[R1 R2]"; eauto.
    iSpl; eauto using env_split_delete.
    iSplitL "H R1"; (iApply "IH" || iApply "IH1"); eauto with iFrame.
  - iSpl; eauto. iApply "IH". iFrame.
  - iDestruct (env_split_substR with "R") as "[R1 R2]"; eauto.
    iSpl; first iPureIntro; eauto using env_split_delete, env_unr_delete.
    case_decide; subst.
    { iDestruct "Q" as "%". iSplit; eauto using env_unr_delete.
      eapply env_unr_substR in H. rewrite H.
      iApply "IH1". iFrame. }
    iSplitL "H R1"; iSpl; (iApply "IH" || iApply "IH1"); eauto with iFrame.
  - iSpl; eauto. (iApply "IH" || iApply "IH1"); eauto with iFrame.
Qed.

Fixpoint rtyped0 e t : rProp :=
  match e with
  | Val v => vtyped v t
  | Var x => False
  | Fun x e =>
       l t1 t2, ⌜⌜ t = FunT l t1 t2 ⌝⌝ 
       Γ, ⌜⌜ env_bind Γ x t1  ⌝⌝ 
      linbox l (rtyped Γ e t2)
  | App e1 e2 =>
       t1 l,
      rtyped0 e1 (FunT l t1 t) 
      rtyped0 e2 t1
  | Unit => ⌜⌜ t = UnitT ⌝⌝
  | Pair e1 e2 =>
       t1 t2, ⌜⌜ t = PairT t1 t2 ⌝⌝ 
      rtyped0 e1 t1  rtyped0 e2 t2
  | LetPair e1 e2 =>
       t1 t2,
      rtyped0 e1 (PairT t1 t2) 
      rtyped0 e2 (FunT Lin t1 (FunT Lin t2 t))
  | Sum i e =>
       n (ts : fin n -> type) (i' : fin n), ⌜⌜ t = SumT n ts ⌝⌝  ⌜⌜ i = i' ⌝⌝ 
      rtyped0 e (ts i')
  | MatchSum n e es =>
       ts,
      rtyped0 e (SumT n ts) 
      if decide (n=0) then emp else (∀ i, rtyped0 (es i) (FunT Lin (ts i) t))
  | Fork e =>
       t1 t2, ⌜⌜ t = FunT Lin t1 t2 ⌝⌝ 
      rtyped0 e (FunT Lin (FunT Lin t2 t1) UnitT)
  end.


Lemma rtyped_rtyped0 e t :
  rtyped  e t ⊣⊢ rtyped0 e t.
Proof.
  revert t. induction e; intros; simpl;
  iSplit; iIntros "H";
  try setoid_rewrite env_split_empty;
  try setoid_rewrite env_var_empty;
  try setoid_rewrite env_bind_empty;
  iDestr "H"; simp; eauto using env_unr_empty;
  try iDestruct "H" as "[H Q]";
  repeat (iExists _ || iSplit); eauto using env_unr_empty;
  rewrite ?H ?IHe ?IHe1 ?IHe2; try case_decide; iFrame; eauto using env_unr_empty;
  iIntros (?); setoid_rewrite H; eauto.
Qed.

Lemma substitution0 v t1 t2 x e :
  vtyped v t1 
  rtyped {[ x := t1 ]} e t2 -
  rtyped0 (subst x v e) t2.
Proof.
  rewrite -rtyped_rtyped0.
  iIntros "[H Q]".
  iDestruct (substitution _ x v e t2 with "[H Q]") as "H"; iFrame.
  - rewrite /substR lookup_singleton //.
  - rewrite delete_singleton //.
Qed.

Lemma pure_preservation e e' t :
  pure_step e e' ->
  rtyped0 e t - rtyped0 e' t.
Proof.
  intros []; simpl;
  iIntros "H";
  try setoid_rewrite env_bind_empty;
  repeat (iDestr "H" || iDestruct "H" as "[H ?]"); simp;
  repeat (iExists _ || iSplit || case_decide); eauto with iFrame.
  - iApply substitution0. iFrame. by destruct l0.
  - subst. inv_fin i'.
Qed.

Lemma replacement1 k e B :
  ctx1 k ->
  rtyped0 (k e) B -  t, rtyped0 e t   e', rtyped0 e' t - rtyped0 (k e') B.
Proof.
  destruct 1; simpl; iIntros "H";
  iDestr "H"; try iDestruct "H" as "[H Q]";
  eauto 8 with iFrame.
Qed.

Lemma replacement k e B :
  ctx k ->
  rtyped0 (k e) B ⊣⊢  t, rtyped0 e t   e', rtyped0 e' t - rtyped0 (k e') B.
Proof.
  intros Hk.
  iSplit; iIntros "H"; last first.
  { iDestruct "H" as (t) "[H Q]". by iApply "Q". }
  iInduction Hk as [] "IH" forall (B e); simpl.
  { iExists _. iFrame. eauto. } subst.
  iDestruct (replacement1 with "H") as (?) "[H R]"; eauto.
  iDestruct ("IH" with "H") as (?) "[Q H]".
  iExists _. iFrame. iIntros (?) "?".
  iApply "R". iApply "H". done.
Qed.


Ltac solve_ctx := solve [iPureIntro; do 2 eexists; split; last done; eauto using ctx, ctx1].
Ltac solve_step := solve [iPureIntro; do 2 eexists; split; eauto using Ctx_id; simp; eauto using pure_step].

Ltac solve_pr := simp; try (solve_ctx || solve_step).

Lemma pure_progress e t :
  rtyped0 e t -  (∃ v, e = Val v) 
     k e0, (ctx k  e = k e0) 
      ((∃ e', pure_step e0 e') 
       (∃ v, e0 = Fork (Val v)) 
       (∃ v k, e0 = App (Val $ BarrierV k) (Val v))) .
Proof.
  iIntros "H".
  iInduction e as [] "IH" forall (t); simpl; eauto;
  iDestr "H";
  try iDestruct "H" as "[H Q]"; simp;
  try iDestruct ("IH" with "H") as %H;
  try iDestruct ("IH1" with "H") as %H;
  try iDestruct ("IH1" with "Q") as %Q; iRight;
  try destruct H; solve_pr;
  try destruct Q; solve_pr;
  destruct H0; simpl; iDestr "H"; solve_pr.
Qed.