From dlfactris.session_logic Require Export sub. Module Ses. Definition fork_chan : val := Sub.fork_chan. Definition recv : val := Sub.recv. Definition send : val := λ: "c" "v", Sub.fork_chan (λ: "c'", Sub.send "c" ("v", "c'")). Definition close : val := λ: "c", Sub.send "c" #(). Definition wait := Sub.recv. Notation prot := Sub.prot. Notation dual := Sub.dual. Notation subprot := Sub.subprot. Notation own_chan := Sub.own_chan. Module Import notations := Sub.notations. Notation subprot_refl := Sub.subprot_refl. Notation subprot_trans := Sub.subprot_trans. Notation subprot_dual := Sub.subprot_dual. Notation own_chan_subprot := Sub.own_chan_subprot. Definition end_prot (a : action) (P : aProp) : prot := (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=32571e09 *) MiniProt a (λ r, ⌜⌜ r = #() ⌝⌝ ∗ P)%I. Global Instance: Params (@end_prot) 1 := {}. Definition msg_prot (a : action) {A} (* https://apndx.org/pub/thesis/thesis.pdf#nameddest=ac40306a *) (v : A → val) (P : A → aProp) (p : A → prot) : prot := MiniProt a (λ r, ∃ x c, ⌜⌜ r = (v x, c)%V ⌝⌝ ∗ P x ∗ Sub.own_chan c (if a is ARecv then p x else dual (p x)))%I. Global Instance: Params (@msg_prot) 2 := {}. Global Instance msg_end_ne a : NonExpansive (end_prot a). Proof. solve_proper. Qed. Global Instance msg_end_proper a : Proper ((≡) ==> (≡)) (end_prot a). Proof. apply: ne_proper. Qed. Global Instance msg_prot_contractive {A} a n : Proper (pointwise_relation A (=) ==> pointwise_relation A (dist n) ==> pointwise_relation A (dist_later n) ==> dist n) (msg_prot a). Proof. solve_contractive. Qed. Global Instance msg_prot_ne {A} a n : Proper (pointwise_relation A (=) ==> pointwise_relation A (dist n) ==> pointwise_relation A (dist n) ==> dist n) (msg_prot a). Proof. solve_proper. Qed. Global Instance msg_prot_proper {A} a : Proper (pointwise_relation A (=) ==> pointwise_relation A (≡) ==> pointwise_relation A (≡) ==> (≡)) (msg_prot a). Proof. intros v1 v2 Hveq Φ1 Φ2 HΦeq p1 p2 Hpeq; apply equiv_dist=> n. f_equiv; [done|..]=> x; apply equiv_dist; auto. Qed. (** WPs for session channels *) Lemma wp_fork_chan p (f : val) : ▷ (∀ c, c ↣ dual p -∗ WP f c {{ _, emp }}) -∗ WP fork_chan f {{ c, c ↣ p }}. Proof. apply Sub.wp_fork_chan. Qed. Lemma wp_recv {A} c (v : A → val) (P : A → aProp) (p : A → aMiniProt) : c ↣ msg_prot ARecv v P p -∗ WP recv c {{ w, ∃ c', ∃ x, ⌜⌜ w = (v x, c')%V ⌝⌝ ∗ c' ↣ p x ∗ P x }}. Proof. iIntros "Hc". iApply (Sub.wp_recv with "Hc"); iIntros (x c') "!> [HP Hc']". eauto with iFrame. Qed. Lemma wp_send {A} c (v : A → val) (P : A → aProp) (p : A → aMiniProt) x : c ↣ msg_prot ASend v P p -∗ P x -∗ WP send c (v x) {{ c', c' ↣ p x }}. Proof. iIntros "Hc HP". wp_rec. iApply Sub.wp_fork_chan; iIntros "!>" (c') "Hc'". wp_pures. iApply (Sub.wp_send with "Hc [-]"); last done. iExists x, c'. by iFrame. Qed. Lemma wp_wait c P : c ↣ end_prot ARecv P -∗ WP wait c {{ v, ⌜⌜ v = #() ⌝⌝ ∗ P }}. Proof. iIntros "Hc". iApply (Sub.wp_recv with "Hc"). Qed. Lemma wp_close c P : c ↣ end_prot ASend P -∗ P -∗ WP close c {{ v, ⌜⌜ v = #() ⌝⌝ }}. Proof. iIntros "Hc HP". wp_rec. iApply (Sub.wp_send with "Hc"). by iFrame. Qed. Global Opaque fork_chan recv send close wait. Global Typeclasses Opaque end_prot msg_prot. End Ses. |