(** This file defines all of the semantic typing lemmas for session types. Most of
these lemmas are semantic versions of the syntactic typing judgments typically
found in a syntactic type system. *)
From iris.bi.lib Require Import core.
From dlfactris.lang Require Import metatheory.
From dlfactris.session_logic Require Import proofmode.
From dlfactris.logrel Require Export session_types term_typing_rules.
Section session_typing_rules.
Implicit Types A B : ltty.
Implicit Types S T : lsty.
Implicit Types Γ : ctx.
Lemma ltyped_fork_chan Γ1 Γ2 S f :
(Γ2 ⊨ f : chan (lty_dual S) ⊸ any ⫤ []) -∗
Γ1 ++ Γ2 ⊨ fork_chan f : chan S ⫤ Γ1.
Proof.
iIntros "#Hf" (vs) "!> HΓ /=".
iDestruct (ctx_ltyped_app with "HΓ") as "[HΓ1 HΓ2]".
iApply ("Hf" with "HΓ2"); iIntros (v) "[HA HΓ']".
iApply (wp_fork_chan with "[HA]").
{ iIntros "!>" (c) "Hc". by iApply "HA". }
iIntros "!>" (c) "Hc". iFrame.
Qed.
Lemma ltyped_send Γ Γ' (x : string) e A S :
Γ' !! x = Some (chan (<!!> TY A; S))%lty →
(Γ ⊨ e : A ⫤ Γ') -∗
(Γ ⊨ send x e : () ⫤ ctx_overwrite x (chan S) Γ').
Proof.
iIntros (HΓx%ctx_lookup_perm) "#He !>". iIntros (vs) "HΓ /=".
iApply ("He" with "HΓ"); iIntros (v) "[HA HΓ']".
rewrite {2}HΓx /=.
iDestruct (ctx_ltyped_cons_named with "HΓ'") as (c Hvs) "[Hc HΓ']".
rewrite Hvs. wp_send with "[HA //]". iSplitR; [done|].
iDestruct (ctx_ltyped_overwrite _ _ x (chan _) with "Hc HΓ'") as "HΓ' /=".
by rewrite (insert_id vs).
Qed.
Lemma ltyped_send_texist {kt : ktele} Γ Γ' (x : string) e M
(A : kt -k> ltty) (S : kt -k> lsty) Xs :
LtyMsgTele M A S →
Γ' !! x = Some (chan (<!!> M))%lty →
(Γ ⊨ e : ktele_app A Xs ⫤ Γ') -∗
(Γ ⊨ send x e : () ⫤ ctx_overwrite x (chan (ktele_app S Xs)) Γ').
Proof.
rewrite /LtyMsgTele.
iIntros (HM HΓx%ctx_lookup_perm) "#He".
iDestruct (ltyped_subsumption with "[] [] [] He") as "He'";
[iApply ctx_le_refl|iApply lty_le_refl|..].
{ rewrite {2}HΓx.
iApply ctx_le_cons; [|iApply ctx_le_refl]. iApply lty_le_chan.
iEval (rewrite HM).
iApply (lty_le_texist_intro_l (kt:=kt)). }
iDestruct (ltyped_send _ _ x _ (ktele_app A Xs) (ktele_app S Xs) with "He'")
as "He''".
{ apply ctx_insert_lookup. }
rewrite /ctx_overwrite ctx_filter_ne_cons ctx_filter_ne_idemp.
iApply "He''".
Qed.
Lemma ltyped_close Γ (x : string) :
Γ !! x = Some (chan END!!)%lty →
Γ ⊨ close x : () ⫤ ctx_filter_ne x Γ.
Proof.
iIntros (HΓx%ctx_lookup_perm) "!>". iIntros (vs) "HΓ /=".
rewrite {1}HΓx /=.
iDestruct (ctx_ltyped_cons_named with "HΓ") as (c Hvs) "[Hc HΓ]". rewrite Hvs.
wp_close. by iFrame.
Qed.
Lemma subprot_lmsg_texist {kt : ktele} (m : ltys kt → msg) :
⊢ (<?> (∃.. Xs : ltys kt, m Xs)%lmsg) ⊑ (<? (Xs : ltys kt)> m Xs).
Proof.
iInduction kt as [|k kt] "IH".
{ rewrite /lty_msg_texist /=. by iExists LTysO. }
rewrite /lty_msg_texist /=. iIntros (X).
iApply (subprot_trans with "IH"). iIntros (Xs). by iExists (LTysS _ _).
Qed.
Lemma ltyped_recv_texist {kt} Γ1 Γ2 M x (xc : string) (e : expr)
(A : kt -k> ltty) (S : kt -k> lsty) (B : ltty) :
x ≠ BNamed xc →
Γ1 !! xc = Some (chan (<??> M))%lty →
LtyMsgTele M A S →
(∀ Ys,
ctx_overwrite x (ktele_app A Ys)
(ctx_overwrite xc (chan (ktele_app S Ys)) Γ1) ⊨ e : B ⫤ Γ2) -∗
Γ1 ⊨ (let: x := recv xc in e) : B ⫤
ctx_filter_eq x (ctx_filter_ne xc Γ1) ++ ctx_anonymize x Γ2.
Proof.
rewrite /LtyMsgTele.
iIntros (Hx HΓxc%ctx_lookup_perm HM) "#He !>". iIntros (vs) "HΓ1 /=".
rewrite {2}HΓxc /=.
iDestruct (ctx_ltyped_cons_named with "HΓ1") as (c Hvs) "[Hc HΓ1]".
rewrite Hvs {1}(ctx_filter_eq_perm (ctx_filter_ne xc Γ1) x).
iDestruct (ctx_ltyped_app with "HΓ1") as "[HΓ1eq HΓ1neq]".
iAssert (c ↣ <? (Xs : ltys kt) (v : val)>
MSG v {{ ltty_car (ktele_app A Xs) v }};
lsty_car (ktele_app S Xs))%I with "[Hc]" as "Hc".
{ iApply (own_chan_subprot with "Hc"); iIntros "!>". rewrite HM.
iApply subprot_lmsg_texist. }
wp_recv (Xs v) as "HA". wp_pures. rewrite -subst_map_binder_insert.
iApply ("He" with "[- HΓ1eq]").
{ iApply (ctx_ltyped_overwrite with "HA").
destruct (decide (x = xc)) as [->|]; [done|].
rewrite ctx_filter_ne_cons_ne //.
iApply ctx_ltyped_cons_named. eauto with iFrame. }
iIntros (w) "[$ HΓ]".
iApply ctx_ltyped_app. iFrame "HΓ1eq". by iApply ctx_ltyped_anonymize'.
Qed.
Lemma ltyped_recv Γ (x : string) A S :
Γ !! x = Some (chan (<??> TY A; S))%lty →
Γ ⊨ recv x : A ⫤ ctx_overwrite x (chan S) Γ.
Proof.
iIntros (HΓx%ctx_lookup_perm) "!>". iIntros (vs) "HΓ /=".
rewrite {1}HΓx /=.
iDestruct (ctx_ltyped_cons_named with "HΓ") as (c Hvs) "[Hc HΓ]". rewrite Hvs.
wp_recv (v) as "HA". iFrame "HA".
iApply ctx_ltyped_cons_named. eauto with iFrame.
Qed.
Lemma ltyped_wait Γ (x : string) :
Γ !! x = Some (chan END??)%lty →
Γ ⊨ wait x : () ⫤ ctx_filter_ne x Γ.
Proof.
iIntros (HΓx%ctx_lookup_perm) "!>". iIntros (vs) "HΓ /=".
rewrite {1}HΓx /=.
iDestruct (ctx_ltyped_cons_named with "HΓ") as (c Hvs) "[Hc HΓ]". rewrite Hvs.
wp_wait. by iFrame.
Qed.
Lemma ltyped_select Γ1 Γ2 (x : string) e t A S ASs :
Γ2 !! x = Some (chan (lty_select ASs))%lty →
ASs !! t = Some (A,S) →
(Γ1 ⊨ e : A ⫤ Γ2) -∗
Γ1 ⊨ send x (Sum t e) : () ⫤ ctx_overwrite x (chan S) Γ2.
Proof.
iIntros (HΓx%ctx_lookup_perm Ht); iIntros "#He !>" (vs) "HΓ /=".
iApply ("He" with "HΓ"); iIntros (v) "[HA HΓ]". rewrite {2}HΓx /=.
iDestruct (ctx_ltyped_cons_named with "HΓ") as (c Hvs) "[Hc HΓ]". rewrite Hvs.
wp_send with "[HA]"; first by rewrite Ht /=.
rewrite lookup_total_alt Ht /=. iSplitR; [done|].
iApply ctx_ltyped_cons_named. eauto with iFrame.
Qed.
Lemma ltyped_branch Γ1 Γ2 ASs B (x : string) tes :
Γ1 !! x = Some (chan (lty_branch ASs))%lty →
([∗ map] t ↦ AS ∈ ASs, ∃ e,
⌜ sum_branch t tes = Some e ⌝ ∧
(ctx_overwrite x (chan AS.2) Γ1 ⊨ e : AS.1 ⊸ B ⫤ Γ2)) -∗
Γ1 ⊨ MatchSum (recv x) tes : B ⫤ Γ2.
Proof.
iIntros (HΓx%ctx_lookup_perm) "#HAS !> %vs HΓ /=". rewrite {2}HΓx.
iDestruct (ctx_ltyped_cons_named with "HΓ") as (c Hvs) "[Hc HΓ]". rewrite Hvs.
wp_recv (t v) as "HA". rewrite lookup_total_alt.
destruct (ASs !! t) as [[A S]|] eqn:Ht; simpl; [|done].
iDestruct (big_sepM_lookup with "HAS") as (e He) "He"; first done. simpl.
assert (TCEq (sum_branch t (prod_map id (subst_map vs) <$> tes))
(Some (subst_map vs e))).
{ apply TCEq_eq. revert e He. induction tes as [|[]];
intros; repeat (case_decide || simplify_eq/=); eauto. }
wp_pures. iApply ("He" with "[HΓ Hc]").
{ iApply ctx_ltyped_cons_named. eauto with iFrame. }
iIntros (vret) "[HAB HΓ]". iApply ("HAB" with "HA"). eauto with iFrame.
Qed.
End session_typing_rules.